Frobenius Series Solution of Fuchs Second-Order Ordinary Differential Equations via Complex Integration
نویسنده
چکیده
A method is presented (with standard examples) based on an elementary complex integral expression, for developing Frobenius series solutions for second-order linear homogeneous ordinary Fuchs differential equations. The method reduces the task of finding a series solution to the solution, instead, of a system of simple equations in a single variable. The method is straightforward to apply as an algorithm, and eliminates the manipulation of power series, so characteristic of the usual approach [14]. The method is a generalization of a procedure developed by Herrera [4] for finding Maclaurin series solutions for nonlinear differential equations. Mathematics Subject Classification: 30B10, 30E20 34A25, 34A30
منابع مشابه
Series Solution of Second-Order Linear Homogeneous Ordinary Differential Equations via Complex Integration
A method is presented, with standard examples, based on an elementary complex integral expression, for developing, in particular, series solutions for second-order linear homogeneous ordinary differential equations. Straightforward to apply, the method reduces the task of finding a series solution to the solution, instead, of a system of simple equations in a single variable. The method elimina...
متن کاملBUCKLING ANALYSIS OF FUNCTIONALLY GRADED MINDLIN PLATES SUBJECTED TO LINEARLY VARYING IN-PLANE LOADING USING POWER SERIES METHOD OF FROBENIUS
In this paper, buckling behavior of moderately thick functionally graded rectangular plates resting on elastic foundation subjected to linearly varying in-plane loading is investigated. The neutral surface position for a functionally graded plate which its material properties vary in the thickness direction is determined. Based on the first-order shear deformation plate theory and the neutral s...
متن کاملApproximate solution of the stochastic Volterra integral equations via expansion method
In this paper, we present an efficient method for determining the solution of the stochastic second kind Volterra integral equations (SVIE) by using the Taylor expansion method. This method transforms the SVIE to a linear stochastic ordinary differential equation which needs specified boundary conditions. For determining boundary conditions, we use the integration technique. This technique give...
متن کاملViewing Some Ordinary Differential Equations from the Angle of Derivative Polynomials
In the paper, the authors view some ordinary differential equations and their solutions from the angle of (the generalized) derivative polynomials and simplify some known identities for the Bernoulli numbers and polynomials, the Frobenius-Euler polynomials, the Euler numbers and polynomials, in terms of the Stirling numbers of the first and second kinds.
متن کاملSolving Volterra Integral Equations of the Second Kind with Convolution Kernel
In this paper, we present an approximate method to solve the solution of the second kind Volterra integral equations. This method is based on a previous scheme, applied by Maleknejad et al., [K. Maleknejad and Aghazadeh, Numerical solution of Volterra integral equations of the second kind with convolution kernel by using Taylor-series expansion method, Appl. Math. Comput. (2005)] to gain...
متن کامل